Interpolation systems for first-order theorem proving Problems with state of the art approach Two-stage interpolation systems Problems with two-stage approach

Two-stage Interpolation Systems¹

Maria Paola Bonacina

Dipartimento di Informatica Università degli Studi di Verona Verona, Italy

July, 2013

¹Joint work with Moa Johansson

Maria Paola Bonacina

Two-stage Interpolation Systems

・ロト ・同ト ・ヨト

.⊒ ⇒

Interpolation systems for first-order theorem proving Problems with state of the art approach Two-stage interpolation systems Problems with two-stage approach

Interpolation systems for first-order theorem proving

Problems with state of the art approach

Two-stage interpolation systems

Problems with two-stage approach

Interpolation system

- Given refutation of $A \cup B$ extracts interpolant of (A, B)
- Associates partial interpolant to every clause
- Defined inductively based on those of parents
- Partial interpolant of □ is interpolant of (A, B)
- Suitable for generic inference systems

Other approaches: interpolation built into decision procedures, interpolation as constraint solving ...

- Inference system Γ: set of inference rules to build refutation
- Interpolation system complete for Γ if it extracts an interpolant from any Γ-refutation
- More than one

Requirements

(Reverse) interpolant I of (A, B) such that $A, B \vdash \perp$:

- **1**. *A* ⊢ *I*
- **2**. *I*, *B* ⊢⊥
- 3. All uninterpreted symbols in *I* are shared

State of the art approach

- Track symbols in refutation
- To determine whether a literal should be added to interpolant by checking simultaneously
 - ▶ Whether it comes from A or B side of proofs (req's 1 and 2)
 - That all its uninterpreted symbols are shared (req. 3)

・ロト ・同ト ・ヨト ・ヨ

Terminology

Uninterpreted symbol:

- A-local or A-colored: in A but not in B
- B-local or B-colored: in B but not in A
- Global or Transparent: in both

Term/atom/literal/clause:

- Transparent: all symbols transparent
- A-colored: all symbols in A and at least one A-colored
- B-colored: all symbols in B and at least one B-colored
- Otherwise: <u>AB</u>-mixed

Partial interpolant

- C occurs in a refutation of $A \wedge B$
- $A \land B \vdash C$
- $A \land B \land \neg C \vdash \bot$
- Interpolant of $A \land \neg C$ and $B \land \neg C$
- $(A \land \neg C, B \land \neg C)$ may share more symbols than (A, B)
- Use projections

<ロト <回ト < 回ト < 回ト

Projections and Partial Interpolants

- $C|_A$: A-colored and transparent literals of C
- $C|_B$: B-colored and transparent literals of C
- Alternative: transparent in $C|_B$ only
- ▶ ⊥ if empty
- Partial Interpolant of C: interpolant of A ∧ ¬(C|_A) and B ∧ ¬(C|_B)

Interpolation for propositional/ground resolution

- All literals are input literals
- ► Either A-colored or B-colored or transparent, no AB-mixed
- Define partial interpolant by case analysis on resolved literal
- [Jan Krajíček 1997, Pavel Pudlàk 1997, Ken McMillan 2003]
- Equality?

- What if *AB*-mixed equation $t_a \simeq t_b$ is derived?
- Rewriting:
 - t_a (t_b): A-colored (B-colored) ground term in normal form
 - $t_a \succ t_b$: replace t_a with t_b everywhere
 - t_b should become transparent
- A-colored/B-colored/transparent should change dynamically!

Separating ordering

Ordering \succ on terms and literals: separating if $t \succ s$ whenever s is transparent and t is not

[Harald Ganzinger et al. 2006, Ken McMillan 2008, Laura Kovàcs and Andrei Voronkov 2009]

Rewriting: t_a and t_b rewritten to t

Lemma: Separating ordering implies no *AB*-mixed literals in ground superposition proofs

Interpolation system GFI: ground superposition

C clause in ground Γ -refutation of $A \cup B$:

- ▶ $c: C \vee I[r] \vee D$ generated from $p_1: s \simeq r \vee C$ and $p_2: I[s] \vee D$
 - $s \simeq r$ A-colored: $PI(c) = PI(p_1) \lor PI(p_2)$
 - $s \simeq r$ *B*-colored: $PI(c) = PI(p_1) \land PI(p_2)$
 - ► $s \simeq r$ transparent: $PI(c) = (s \simeq r \lor PI(p_1)) \land (s \not\simeq r \lor PI(p_2))$

 Resolution, Superposition into equational literal and Simplification ... treated similarly

Theorem: If the ordering is separating, $G\Gamma I$ is a complete interpolation system for ground Γ -refutations

Interpolation of non-ground proofs?

Inferences apply substitutions creating AB-mixed literals

 $g(y, b) \simeq y$ and $f(g(a, x), x) \simeq f(x, a)$, with $\sigma = \{y \leftarrow a, x \leftarrow b\}$, generates $f(a, b) \simeq f(b, a)$, where both sides are *AB*-mixed literals

This inference is compatible with a separating ordering, which therefore no longer suffices

Restrict to proofs with no AB-mixed literals?

Not enough:

$$\neg P(x, b) \lor C$$
 and $P(a, y) \lor D$ with $x \notin Var(C)$, $y \notin Var(D)$,
 $\sigma = \{x \leftarrow a, y \leftarrow b\}$ yield $(C \lor D)\sigma$

 $\neg P(a, b)$ and P(a, b) AB-mixed

Case analysis on resolved literal does not suffice

Restrict to proofs with no AB-mixed clauses?

So called local inferences: only one color involved

Not enough:

$$p_1: L(x, a) \lor R(x)$$
 and $p_2: \neg L(c, y) \lor Q(y)$ with
 $\sigma = \{x \leftarrow c, y \leftarrow a\}$ yield $R(c) \lor Q(a)$

 $(\mathit{PI}(p_1) \lor \mathit{PI}(p_2))\sigma$ may not be transparent

A two-stage approach

Separate entailment and transparency requirements

First stage: compute provisional interpolant \hat{l} such that $A \vdash \hat{l}$ and $B, \hat{l} \vdash \perp$ but may contain colored symbols

[Guoxiang Huang 1995]

Interpolation systems for first-order theorem proving Problems with state of the art approach **Two-stage interpolation systems** Problems with two-stage approach

Use labels to track where literals come from

- Clause in A: literals get label A
- Clause in B: literals get label B
- ► Resolvent (C ∨ D)σ: literals inherit labels from literals in parents
- ▶ Paramodulant $(C \lor L[r] \lor D)\sigma$: as for resolution and $L[r]\sigma$ inherit label of para-into literal

Interpolation systems for first-order theorem proving Problems with state of the art approach **Two-stage interpolation systems** Problems with two-stage approach

Example

$$L(x_1, c)_{\mathbf{A}} \lor P(x_1)_{\mathbf{A}} \lor Q(x_1, y_1)_{\mathbf{A}}$$
$$\neg L(c, x_2)_{\mathbf{B}} \lor P(x_2)_{\mathbf{B}} \lor R(x_2, y_2)_{\mathbf{B}}$$
$$\sigma = \{x_1 \leftarrow c, x_2 \leftarrow c\}$$

Resolvent: $P(c)_{\mathbf{A}} \lor Q(c, y_1)_{\mathbf{A}} \lor P(c)_{\mathbf{B}} \lor R(c, y_2)_{\mathbf{B}}$ which becomes $Q(c, y_1)_{\mathbf{A}} \lor P(c)_{\mathbf{B}} \lor R(c, y_2)_{\mathbf{B}}$ after merging

<ロト <回ト < 回ト < 回ト

Interpolation systems for first-order theorem proving Problems with state of the art approach **Two-stage interpolation systems** Problems with two-stage approach

Labeled Projections and Provisional Partial Interpolants

- $C|_{\mathbf{A}}$: literals of C labeled **A**
- C|B: literals of C labeled B
- ▶ ⊥ if empty
- Commute with substitutions: resolvent $(C \lor D)\sigma$ $(C \lor D)\sigma|_{\mathbf{A}} = (C|_{\mathbf{A}} \lor D|_{\mathbf{A}})\sigma$
- ▶ Provisional partial interpolant: provisional interpolant of $A \land \neg(C|_{\mathbf{A}})$ and $B \land \neg(C|_{\mathbf{B}})$
- ▶ Provisional partial interpolant of □ is provisional interpolant of (A, B)

イロン イヨン イヨン -

Interpolation systems for first-order theorem proving Problems with state of the art approach Two-stage interpolation systems Problems with two-stage approach

Provisional interpolation system

- $c: (C \lor D)\sigma$ resolvent of $p_1: L \lor C$ and $p_2: \neg L' \lor D$:
 - Both literals **A**-labeled: $\widehat{PI}(c) = (\widehat{PI}(p_1) \vee \widehat{PI}(p_2))\sigma$
 - Both literals **B**-labeled: $\widehat{PI}(c) = (\widehat{PI}(p_1) \land \widehat{PI}(p_2))\sigma$
 - Positive **A**-labeled and negative **B**-labeled: $\widehat{PI}(c) = [(L \lor \widehat{PI}(p_1)) \land \widehat{PI}(p_2)]\sigma$
 - ► Vice versa: $\widehat{PI}(c) = [\widehat{PI}(p_1) \land (\neg L' \lor \widehat{PI}(p_2))]\sigma$

Superposition: similar with para-from and para-into literals

Interpolation systems for first-order theorem proving Problems with state of the art approach **Two-stage interpolation systems** Problems with two-stage approach

A complete provisional interpolation system

- Build provisional interpolant mostly by adding instances of A-labeled literals resolved or paramodulated with B-labeled ones: *communication interface*
- Theorem: Provisional interpolation system is complete
- ► Lemma: Provisional interpolants are in negation normal form with \forall -quantified variables and transparent predicate symbols

Interpolation systems for first-order theorem proving Problems with state of the art approach **Two-stage interpolation systems** Problems with two-stage approach

Second stage: lifting

- All functions in provisional interpolant interpreted or transparent
- ► Replace A-colored constant by ∃-quantified variable
- ► Replace *B*-colored constant by *∀*-quantified variable

A complete interpolation system

- Theorem: Lifting of provisional interpolant *î* of (A, B) is interpolant:
 - Lemma: B, Î ⊢⊥ implies B, Lift(Î) ⊢⊥ bwoc: assume B, Lift(Î) has model ... A-colored constants new, interpreted as ∃-vars
 - Lemma: A, ¬Î ⊢⊥ implies A, ¬Lift(Î) ⊢⊥ bwoc: assume A, ¬Lift(Î) has model ...
 B-colored constants new, interpreted as ∃-vars (after negation)
 Lift(Î) is transparent
- Corollary: Provisional interpolation system + lifting = complete interpolation system

Interpolation systems for first-order theorem proving Problems with state of the art approach Two-stage interpolation systems Problems with two-stage approach

Problems with two-stage approach

- Does not handle colored function symbols in provisional interpolant
- Lifting terms with colored top symbol removes too much information
- Other work: proof transformation (localization) applied to ground proofs: [Jürgen Christ and Jochen Hoenicke 2010; Ken McMillan 2011; Kryštof Hoder, Laura Kovàcs and Andrei Voronkov 2012]

Interpolation systems for first-order theorem proving Problems with state of the art approach Two-stage interpolation systems **Problems with two-stage approach**

- Interpolation systems for first-order theorem proving
- Color-based approach and its limitations
- Two-stage approach and its limitations